事情的开始是为了应对期末考试不让带计算机,我们几个人在一起讨论起了如何计算开根号,当时小马哥和卢总那叫一个绞尽脑汁,小生灵机一动,算不好算,那可以量嘛!
随即粗略计算开根号的方法——测量,就“当当当”出现啦。
其实就是利用勾股定理,画个直角三角形,把某个边凑成所求的数值即可。例如要求 $\sqrt{5}$,就画一个直角边分别为 1 和 2 的直角三角形,然后量一下斜边就是 $\sqrt{5}$ 的粗略值了。
这样,我们只需要将要求的根号值凑进一个较易画出的直角三角形即可, 甚至我们可以叠加出多个三角形来求较难凑的数,例如要求 $\sqrt{6}$,可以先用 1 和 2 连出一条长为 $\sqrt{5}$ 的斜边,再以此为直角边接上长为 1 的直角边画三角形,再出来的斜边就是 $\sqrt{6}$。
由于期末考试大多是一些较为简单的开根号计算,那么这样来粗略地精确到小数点后一位或两位是没问题的。普通尺子很难到如此精确?哈,我可没说上面的“1”“2”单位是厘米嘛,把 1 画成 1cm 是一个精确度,那画成 10cm 不就又精确一些嘛,当然也可以画成 5cm 量出来再换算一下就是了,跟地图上的图例一个道理。
哈哈,我甚至想到要是做出一种扁平的三角尺,两直角边从直角顶点开始标刻度,在一些特殊长度如 $\sqrt{2}$、$\sqrt{3}$、$\sqrt{6}$…处标记,到时候就可以直接拿个尺子找到对应的两点测量了。
ps:最后考试也没用到这个方法,老师们仁慈,线上考试答案都以选项形式给出了。